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Abstract. A lattice fluid model on a two-dimensional quadratic lattice is considered in
which molecules are capable of preferential bonding between second neighbours. A
Hamiltonian is introduced which has interactions which differentiate between parallel and
antiparallel spins and parallel and orthogonal spins. A number of interesting special cases
are considered including a four-state dilute Potts model and a five-state Potts model. The
phase transitions are investigated using Landau symmetry theory. The fluid transition is
studied using a mean-field approximation. Within the limitations of this method the system
is predicted to have water-like properties.

1. Introduction

It is now widely recognised that many of the ‘anomalous’ properties of water arise from
the strongly directional nature of hydrogen bonding, which leads to the existence of
regions of open structure with a lower density than other molecular arrangements (see
e.g. Eisenberg and Kauzmann 1969, Fletcher 1970, Perram and Levine 1974). This
point of view has motivated the introduction of two-dimensional (Bell and Lavis 1970)
and three-dimensional (Bell 1972) lattice fluid models. In these models each molecule
has a number of bonding arms pointing to a subset of the neighbouring sites. If one of
these neighbouring sites is also occupied by a molecule with a bonding arm in the
direction of the first molecule then a low-energy bond may be formed. In the case of the
model of Bell and Lavis (1970), which is based on a triangular lattice, the bonding arms
are all equivalent and a bond is always formed by the molecules in the configuration
described. In the three-dimensional body-centred cubic model of Bell (1972) the arms
are directional (positive and negative) and a bond is formed if and only if there is a
conjunction of a positive and a negative arm.

The work of Bell and Lavis (1970) and subsequent papers by Lavis (1973, 1975) for
the triangular lattice model employ a mean-field approximation method. Within the
limitations inherent in such a method the model is shown to have some of the anomalous
properties of water. The form of the pressure-temperature phase diagram follows quite
closely that derived from a transfer matrix calculation (Lavis 1976). It is clear that the
complexity of this model excludes at present an exact solution. In this context it is
interesting to note that if this triangular lattice model is expressed in spin-1 form then it
becomes a generalisation of the well known model of Blume et al (1971). This, on the
one hand, emphasises the difficulty involved in the search for an exact solution, but on
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the other hand suggests that real-space renormalisation methods are feasible (see e.g.
Berker and Wortis 1976). These calculations have now been completed (Young and
Lavis 1979, Southern and Lavis 1979) using the block-spin method employed by Schick
et al (1977) for the spin-3 Ising model and by Schick and Griffiths (1977) for the
three-state Potts model. In the work of Southern and Lavis the phase diagram is
obtained. It follows quite closely that derived from previous calculations. The one
significant difference is that the solid-liquid transition, which was predicted to be first
order by mean-field methods, now becomes second order. This result is probably due to
the two-dimensionality of the system rather than the directional bonding character of
the molecules. In this respect these results do of course add a cautionary note to any
conclusions which may be drawn from the present calculations. The discrepancy
between mean-field calculations and real-space renormalisation methods may not be
evident in a three-dimensional model such as that of Bell (1972).

In this paper we wish to discuss an alternative two-dimensional model with
molecules with directional bonds. The model is based on a square lattice and the
bonding is between second rather than first neighbours. In § 2 we propose a rather
general Hamiltonian which has a number of interesting special cases. One of these is a
five-state analogue of the Blume-Emery-Griffiths model, and another is a five-state
Potts model. In § 3 we consider the possible phase transitions of the model predicted by
Landau symmetry theory (Landau and Lifshitz 1958, Lyubarskii 1960). In subsequent
sections we consider the vapour-liquid transition using the mean-field approximation
of Guggenheim and McGlashan (1951). Again within the limitations of the method, the
model is predicted to have water-like properties.

2. The detailed model

We consider a quadratic lattice of N sites with periodic boundary conditions. Begin-
ning at an arbitrary site with position vector ro the lattice sites are given by the vectors

r=ro+1(nii+naf) (n1=0,1,...,Ni—1, n;=0,1,...,N,—1)

where [ is the nearest-neighbour lattice distance, i=(1,0)and f = (0, 1) are orthogonal
unit vectors in the directions of the sides of the basic lattice square, and N1.N, = N. The
lattice is divided into two equivalent interpenetrating sublattices « and 8 so that, taking
ro to be an « site, the vector r represents either an « or a 3 site according to whether
ni+ n, is respectively even or odd.

Each lattice site is either occupied by a molecule or it is vacant. The ‘spin’ s of a
molecule is aligned along one of the sides of the lattice square. We therefore represent
the state at a lattice site by the vector s = +1, + f, 0, where s = 0 represents a vacant site.
The four molecular states are shown in figure 1, where we have represented the bonding
arms by plus and minus signs. It will be seen that the bonding arms of a molecule point
towards the four second-neighbour sites. A bond will be formed between a pair of
molecules on second-neighbour sites if and only if there is conjunction between a
positive and a negative bonding arm. In order to deal with molecular bonding which
distinguishes between sublattices we must divide the lattice into two types of basic
square (see figure 1). A square of type A has an « site at the bottom left and top right
and a B site at the bottom right and top left; a square of type B has the converse
arrangement.
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Figure 1. (a) The four orientational states of a
molecule. The bonding arms are labelled with plus
and minus signs. (b) The fully bonded open ground
state [2, 1] on sublattice a, all sites of sublattice 8
being vacant. Squares of sites of types A and B are
labelled.

The number M of molecules on the lattice is given by
M(sh = (Z; s*(r) (2.1)

where the sum is over all sites r of the lattice. If we use the grand canonical distribution
then the exponent factor which appears in the distribution is

—%({sP/kT =[uM {s) - H({sD)/ kT (2.2)

where u is the chemical potential per molecule, H is the Hamiltonian, k is Boltzmann'’s
constant and T is the absolute temperature. Our proposed form of ¥ is given by

X({sh =2D: HASx15 Sa2, Sg1, Sg2) (2.3a)
where the summation is over every neatest-neighbour square of the lattice and
%Cl(saly Sa2; 881, SB2)

2 2 2 2 2 2 2
=—3u(s2) +52; + 551 +552) +ies(s21 +532)(s51 +552)
2
+373(Se1 + Sa2) « (sg1+58g2) +321[(S01 - $g1)” + (Sa1 -‘)‘;s;z)2
2 2 2 2 2

+(Saz « S81)° + (Saz - $52)" ]+ (€2 +3w)(sZ:522 +s51s,292)

+ (T +3W)(Sa1 - Saz+ 581 « S2) + 22[(Sa1 + Su2)” + (51 + 552)°]

+us215228215%2 £3w (501 K8 — 55, Ksh). (2.3b)

In equation (2.35) the plus or minus sign before the final term applies respectively to a
square of type A or type B, and

()
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We see that a pair of first- or second-neighbour molecules will interact with energy €, or
€, respectively, irrespective of their orientations. The energies J; and J, distinguish
energetically between parallel and antiparallel orientations, between and within
sublattices respectively. The energies z, and z, distinguish energetically between
aligned and orthogonal orientations, between and within sublattices respectively. The
second-neighbour bonding energy is w and the interaction energy u occurs only for a
fully occupied square of molecules.

For the case w = 0 the ‘effective Hamiltonian’  is similar to that of the Blume-
Emery-Griffiths model, except that now we have five rather than three states. The
other main differences are that we have included both first- and second-neighbour
interactions and, since in this case (s . 52)° # s3s3, terms of both types are included.

We now consider the group operations under which # is invariant. We define the
following groups:

(@) &%,={i, 3} operating on sublattice labels, where I is the identity element and &
permutes sublattice labels;

(b) €av={I, Cs, Cs4, C3, 0s, oy, 04 O3}, the eight-order group operating on the four
molecular states as shown in figure 2;

(c) s, the 24-order symmetric group operating on the four molecular states;

(d) &;s, the 120-order symmetric group operating on the five states at a lattice site
including the vacant state.

Figure 2. The operators of group %, on
molecular states. The rotations €4, €, and
%3 are denoted by directed arcs of a circle.
Reflections o, oy, o, and o, about axes are
indicated by labels attached to the axes.

In terms of these groups we have the following special cases:

() w=u=0,J1=z1=€/2, Ja=z2=¢€2/2, u=8(J1+J2). ¥ is invariant under
%, ® ¥s and we have a five-state Potts model. .

(ii) w=0, Jy= 2z, J,=1z5. ¥ is invariant under ¥>® ¥, and we have a four-state
Potts model with respect to the molecular states. This could be called a ‘dilute four-state
Potts model’. .

(iii) w=0. ¥ is invariant under ¥, ® €4, and we have, as indicated above, a
five-state analogue of the Blume—Emery-Griffiths model.
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In the general case the symmetry group is further reduced to the eight-order
subgroup G of F,® %4, given by G={({D), (IC2), (6Cs), (6CI), (603), (0, (o),
(i)} This group is isomorphic to %a..

3. Landau theory

Let p(r;s) be the probability that the lattice site located at vector position r has a
molecule (or vacancy) specified by the state vector s. Clearly for each r

p(r; D+p(r; =D +p(r; O +p(r; H+p(r; -H=1 (3.1)

and a general state of the system needs 4N probabilities for complete specification. In
the spirit of Landau theory we impose homogeneity within sublattices so that p(r; s) =
po(s) for every a site and p(r;s)=pg(s) for every B site. We now have eight
independent probabilities, in terms of which we define the independent order
parameters

p = Hpa D)+ Pal=1) + pu () + pa (=) + P (D) + P (— ) + pa(J) + Pa (=1} (3.2a)
0 =Y pa () + po (=) +pa (D) + pa(=1) = Pa ()~ Pu (=) = Pa (/) — P ()} (3.2b)
& =Hpa(D) +pe(§) = pa(~D) — pa ()} (3.2¢)
&= pa () + P (N —Pa(=1) ~ ps (=1} (3.2d)
¥ =3{Pa (D) + Pa(= )+ pal N + pa(=1) = s (§) — pa(~ ) = pa () ~ pa (=1} (3.3a)

=HPa (D) + Pa(~ D)+ s () + e (1) = Pa () = Pa (=) = P () ~ ps ()} (3.3b)
1= Pu () +pe (=D — pa () — pa (-} (3.3¢)
2 =3 pu (D) +Pe (=)~ pa (N~ pa (D)} (3.3d)

It is not difficult to show that, in terms of these order parameters, the probability weight
function p(r; s) is given by

=200 o179
(@)1 seon(2529) conP9 - (e -eor(2-9)
() 759+ (G) (P75 oo
o4 scon(52) con( 2L (@)oo 259 o)
() n(5)-(3) (23] 39

We are concerned with the transformations of the order parameters under the elements
of the groups G, $,® €,,, $>28 %, and #2® Fs. The generators of these groups are as
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follows:
G: {(0.), (o)}
$2:®@ %4 {(02), (G02), (o)}
$ Q% {({0a), (60), (o), ()
Qs {(ow), (602), (o), (17), (4, v)}

where 7 mterchanges the states t and 1 leaving 0, ~{ and —j unchanged and v
interchanges — fand 0 leaving i, —fand j unchanged. The effect of these generators on
the order parameters is given in table 1. We denote the irreducible representations of

Table 1. The transformations of the order parameters by the generators of the symmetry

groups.

(o.) (do) (61) 163) ()
p-t p-% p—t p—4% p—3% ~Ho-H+30+3¢8
6 -9 ] 6 L-& fo-H+3o-1is
& & & 3} e +£,-0) &
& & -£& & &+ 6+6) fo-9H-lo+is
¥ v —~¢ —¢ y S +3d+iy
) —¢ -¢ ~-¢ Y21 w+io—iv,
Y1 Y2 Y1 =¥ %(‘Yx+72"¢) Y1
¥a " vz ~v2 Hyi+vat ) -t +iv

%4 (and G) by the standard notation {AI, Az, By, By, E} (see e.g. Kilpatrick 1948) and
the irreducible representations of A by {A, B}. The one-dimensional symmetric
representation of ¥, is denoted by A’ and the three-dimensional irreducible represen-
tation whose characters are given by the number of one-cycles minus one is denoted by
F. Similarly we denote the four-dimensional irreducible representation of %5 whose
characters are given by the number of one-cycles minus one by D. The way in which the
order parameters give irreducible representations of the symmetry groups is shown in
table 2. It will be seen that the parameter p, given by equation (3.2a), is the molecular
number density M/N. Except in the special case (i) of § 2, where the symmetry group is

Table 2. The irreducible representations of the symmetry groups given by the order

parameters.

G FHRE,, FASEA P ®Fs
-t A A®A, Aga’ .
) B, A®B, " A®D
£ _ A®F

E A®E
& ~ N
v B, B®A, BeA’ .
¢ A, B®B, . B®D
" . B®F

E B®E
Y2
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%, ® ¥ this parameter corresponds to the one-dimensional symmetric representation.
As in most fluid systems p is not an order parameter in the Landau sense; there does not
exist a critical density p. such that (p —p.) =0 for all temperatures above a critical
temperature T.. The exception to this comment concerning fluid systems is, of course,
the simple lattice gas, which in the grand canonical distribution has the hole—particle
symmetry arising from the equivalent Ising model. Inthat case if the chemical potential
w is fixed at the critical value u. then the parameter (p —3) remains equal to zero down
to the critical temperature at which a second-order phase separation into vapour and
liquid phases occurs. We show in § 5 that, within the first-order mean-field approxima-
tion of Guggenheim and McGlashan (1951), this system exhibits similar symmetry
properties, except that here the curve of approach to the critical point in the
i — T plane is of the form u = u*(T), where »*(T) is not a constant. This symmetryisa
product of a particular classical approximation method and is not evident from
Landau theory.

The order parameters 6, £; and &, given by equations (3.25)-(3.2d), are all zero in
the high-temperature disordered phase. They are related to or1entat10nal ordering of
the molecules; @ distinguishes between molecules aligned in the +{ direction and those
aligned in the + f direction and ¢, and &, correspond to the occurrence of ‘spin moments’
in the { and j directions respectively. Itis clear from table 1 that, in the general case and
in the special case (iii) (w = 0), the irreducible representations {0} and {£,, £} yield no
third-order invariants. The transitions to the orientationally ordered states, if they
occur, are predicted by Landau theory to be second order. In the special case (ii)
=21, 2= 22, W= 0) the irreducible representation {6, &, &} yields the third-order
invariant 8(£3—£3) and here the prediction for a possible phase transition is that it
would be first order. In the special case (i) the symmetry group is $2®%s. The
parameter (p—%) is now zero in the high-temperature disordered phase and the
irreducible representation {(p —$%), 8, &1, &} yields the third-order invariant 26(£3 —
)+ (p -0 +2£:+2£2) - 5(p —%)°. Again a possible phase transition is predicted to
be first order by Landau theory. The order parameters ¢, ¢, y1 and vy, given by
equations (3.3) are all zero in the high-temperature disordered phase. They are related
to sublattice ordering of the molecules; ¢ measures the difference of molecular number
density on the two sublattices and ¢, y; and ¥, are related to differences of occupations
of particular molecular orientations on the sublattices. It is clear that every possible
phase transition to a sublattice-ordered state is predicted to be second order.

It is necessary at this point to emphasise the limitation of Landau theory in two
respects. (i) It gives guidance only in relation to possible phase transitions. It does not
predict that such phase transitions will necessarily occur. (if) It is not infallible in its
predictions, which are always those of mean-field theory. An example of this latter
weakness is provided by the g-state Potts model. Here mean-field theory predicts a
first-order phase transition for ¢ >2 (Mittag and Stephen 1974) in the case of only
nearest-neighbour coupling. Baxter (1973) has, however, shown rigorously that the
transition in such a model on a two-dimensional quadratic lattice is first-order only for
q >4, it being of higher order for g <4.

The value of Landau symmetry theory is also twofold. (a) It provides an elegant way
of deriving the predictions of mean-field theory without detailed calculations using a
particular approximation method. (ii} It gives good guidance with respect to the
symmetry properties of the Hamiltonian. This can be particularly useful in the initial
stages of group renormalisation calculations (see e.g. Schick and Griffiths 1977, Young
and Lavis 1979).
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4: The vapour-liquid phase transition

To eliminate the complications arising from orientational ordering we set z; =2z,=0
(ensuring that @ remains equal to zero) and J; = J; = 0 (ensuring that £; and £, remain
equal to zero). We are left with four energy parameters: w the bonding energy, €; and
€, the first- and second-neighbour energies and u the four-molecule energy. With these
energies the spectrum of the single-square effective Hamiltonian #5 has ten levels.
These we denote by [, i], where n is the number of occupied sites (n =0, 1, 2, 3, 4) and
i distinguishes between the different non-equivalent occupations corresponding to a
particular value of n. Let €[n, i] be the value of #- when the square is in level [, i]and
let w[n, i]be the degeneracy of the level. In table 3 we list the possible configurations
[n, {] together with their values of €[n, i] and w[n, i]. It is clear that it is possible to
occupy every square of the lattice by identical configurations corresponding to any one
of the levels [n, i]. These ten configurations therefore represent possible groundstates
of the system. The most stable groundstate will be that which corresponds to the lowest
value of €[n, i] and the pressure of the system in configuration [n, /]at T = 0 is given by
P=—¢[n,il/l>

Since this model] is intended to simulate the behaviour of the water system, we
impose conditions on the energy parameters in order to ensure that the stable
groundstates reflect our intentions. Clearly, for large negative chemical potentials,
state [0, 1] is the stable groundstate and we identify this with the vapour phase. At the
other extreme for large positive chemical potentials a fully occupied state (n = 4) will be
most stable. In order to ensure that this is state [4, 1], the fully bonded structure
analogous to close packed ice, we need simply to impose the condition

w<0,. 4.1)

This automatically ensures not only that [4, 1] is more stable than [4, 2] and [4, 3] but
that [2, 1] is more stable than [2, 2] and [3, 1] is more stable than [3, 2]. Configuration
[2, 1]is our analogue for the ordinary low density ice structure. For it to be more stable
that configuration [2, 3] we must have

2(W+€2)<€1. (42)

In order for there to be a range of chemical potentials, corresponding to positive
pressures, for which configuration [2, 1]is more stable that either [0, 1]or[4, 1] we must
have

0<2e1+u. 4.3)

In addition we wish to exclude the possibility of stability ranges for configurations 1, 1]
and [3, 1]. This is achieved if

w+er< 0 (44)
and

w+e+u<0 4.5)
respectively. Finally, to complete the analogy with water, we impose the condition that
there is a range of pressures such that along an isobar in this range in the p~T plane the

density has a maximum. A sufficient condition for this to be the case can be derived by
considering small perturbations on the open ground state [2, 1]. We find that

0<e; +u. (4.6)
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Table 3. Molecules are denoted by full circles and vacant sites by open circles. A bond is
represented by a double line.

Configuration €[n, i] w[n, i]
[1,1] D ~iu 16
[2,1] Z wtes—pu/2 16
2,2] D e2—uf2 16
[2,3] D te1—-u/2 64
[39 1] Z w+51+€2—3y,/4 128
[3,2] [I €1+€,—3u/4 128
[4, 1] % 2w+2e1+2e+u—u 64
p
[4,2] w+2e1+2e3+u—p 128
3
]
[4,3] | 2¢;+2¢;+uUu—u 64
b
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When all these conditions are satisfied we have:

Configuration [0, 1] is stable if u <uo, P=0;

Configuration [2, 1] is stable if uo < < i, 0< P < Py, with a density maximum along
isobars in the range P, <P < Py;

Configuration [4, 1] is stable if u; <u, Py <P, where

o =2(w +ez) (4.7a)
ui=2w+er+2e+u) (4.7b)
Py=Qe+u)/l’ (4.7¢)
Py=e/1%. (4.7d)

We now investigate the possibility of a vapour-liquid phase transition using the
approximation method of Guggenheim and McGlashan (1951), based on a square of
sites. We divide the lattice into N/2 squares of sites, with sites but not nearest-
neighbour pairs in common. This means that, in terms of the formulation given for the
Hamiltonian in § 2, we are considering a distribution of molecules only with respect to
either squares of type A or type B. This effectively removes the distinction between a
and B sublattices and eliminates the possibility of sublattice ordering; the parameters ¢,
¢, v1 and y; remain equal to zero. This means that the molecular ordering configura-
tions of the types described above for the ground states can occur only as forms of
short-range ordering. In the case for example of configuration [2, 1], where the perfect
ground state would entail A squares bonded from the top right to the bottom left with B
squares bonded from the top left to the bottom right or conversely, our method is
equivalent to averaging over the two arrangements. Since we are considering only
vapour and liquid phases, where for the latter we expect uncorrelated regions of
ordering of the types exhibited by the ground states, the method is satisfactory.

The details of the derivation of the thermodynamic equations are given in the
Appendix. We find that a state of the system at fixed u and T can be expressed in terms
of a parameter A, which is related to the probability p, that the basic square of sites is
occupied by exactly n molecules, for n =0, 1, 2, 3, 4, by the equations

p1/po=4Ac(T) (4.8a)
P2/Po=6A%b(T) (4.8b)
p3/po=4A’c(T) (4.8¢)
pa/po=A*{1+0v(T)} (4.84)
Where
v(T) =exp(—~2u/kT)—1 (4.9a)
¢(T) =2 expl(e1 +€2)/ kTT[1 +exp(—2w/kT)] "/ (4.9b)
b(T)=3%c*(T) exp(—e,/kT)+3 exp(2e,/kT). (4.9¢)

The molecular number density p, the chemical potential x and the pressure P are
related to the parameter A by the equations

AT A +A%(T)
FT; AN +A(T; A+ A%o(T)

p=%y np,= (4.10)
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u=g(T;A) (4.11)
PP =h(T;A) (4.12)
where
AT:A)=c(T)A+3b(T)+3c(T)A '+ A2 (4.13)
L HD(T; MA®
g(T; A)=kT ln[ AT A+ A% (T)] (4.14)
and
FAT; AA?
. 1
h(T; A) = 3T ln[ TR AT AT (T)]. (4.15)

The thermodynamic potential @ per site associated with the grand canonical dis-
tribution is given by

D(u, T; A)=p{g(T; A)—u}—h(T; A). (4.16)
Equation (4.10) can be regarded as the definition of g in terms of A and, since
p 8g/dA =dh/3A 4.17)

equation (4.11) is the equilibrium condition for A at constant u and T obtained by
minimising ®. Equation (4.12) is then given by

d)min(“a T)= —P12~ (418)

We now investigate the possibility of the existence of pairs of solutions {A, 1/A} of
equation (4.11). At the outset we prove that if such a pair exists then the members of
the pair represent minima of the potential @ of equal depth. This follows from the
equation

PP =3kT In[v(T)+ A’ f(T; A)+A2f(T; A™H)]
+u —3kT In{[exp(u/kT) +c*(T)A*/4]
x [exp(u/kT)+c*(T)/(4AD]} (4.19)

which has been derived from equations (4.11) and (4.12). The right-hand side of
equation (4.19) is symmetric under the mapping A <> 1/A, and it follows that if A and
1/A satisfy equation (4.11) then the equilibrium situation is one of phase coexistence.
The condition for the existence of this pair of solutions can now be derived from
equation (4.11). Following the procedure of Lavis (1975) we define the new variable y
by the equation

A=(1+sin x)/cos x (—w/2<sxy<smu/2) (4.20)

and we look for a pair of solutions +x where, from equation (4.11), y must be a solution
of

Y(T;cosxy)=0 4.21)
where

W(T; y)=Bo(T)+Bi(T)y + BT)y*+ Bs(T)y* (4.22)

Bo(T)=4c%(T) (4.23a)

By(T)=12b(T)c(T) (4.23b)
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By(T)=4c (T)+9b3(T)—1-v(T) (4.23¢)
B3(T)=c(T)[6b(T)-2—-v(T)]. (4.23d)

On physical grounds our requirements are that: (i) V(T '; y) should have no root in the
range [0, 1] at high temperatures; (ii) ¥(T'; y) should have at most one root in the range
[0, 1]; (i) if a root of W(T'; y) appears in the range [0, 1] at a temperature T, then it
should make its appearance at y = 1; (jv) W(T'; y) should have a root in the range [0, 1]
at low temperatures. It is clear that condition (7) is satisfied since as T tends to infinity
b(T)~c(T)~1, v(T)~0 and ¥(T; y)~4(1 +y)3. Now Bo(T)>0 and B{(T)>0 for
all T>0. Since 95*(T) contains the term exp(4e,/kT) (see equation (4.9¢)) and we
have imposed the condition (4.3), it is also the case that Bo(T)>0 for T > 0. Thus we
see that W(T'; y) has at most one positive root, and this if and only if B5(7T) <0. At high
temperatures B;(T) >0 and if T} is the temperature at which B3(T) =0then ¥(7y; 1) >
0. Conditions (i{) and (iii} are satisfied. To satisfy condition (iv) we must ensure that
Bi(T) is negative at low temperatures and that it dominates B,(7T), B1(T) and Bo(T) so
that W(T'; 1) is negative. Now if ¢(T') tends to infinity as T tends to zero then we must
have u <0, otherwise the negative part of B3(7T) is dominated by Bo(T'). In this case for
Bs(T) to be negative as T tends to zero we must have —2u >2e;, which violates
condition (4.6). Itis equally clear that, if ¢ (T) remains finite as T tends to zero, then the
negative part of Bs(T) is dominated by B,(T'). We are left with the condition that ¢(T)
tends to zero as T tends to zero. Now we have

u>0 (4.24)
61<O. (4.25)

The function ¢(T) will tend to zero in such a way that the negative part of B3(T)
dominates B,(T), B1(T) and Bo(T) if

_El>3(W‘+‘€2) (426)
w+er>3€;. (4.27)

We now have two sets of conditions on our energy parameters (4.1)—(4.6) and
(4.24)-(4.27). Of these conditions, (4.2), (4.4), (4.6) and (4.26) are automatically
implied by the remaining six.

In our numerical calculations we consider three cases: (i) e2/w =05, u/w=—-1-1,
(iiyea/w =06, u/w=—1-38, (iii) e2/w = 0-8, u/w = —1-8. It will be observed that case
(iii) corresponds to condition (4.5) becoming an equality. This means that at the
pressure P, or the chemical potential u; the configurations {2, 1],[3, 1]and [4, 1]are all
equally stable at T = 0. This has a negligible effect on the behaviour of the system, since
in any case the ground state at this special value of the pressure or chemical potential
would be a mixture of configurations {2, 1]and [4, 1]. In figure 3 we show curves of the
reduced critical temperature kT./|w/| as a function of €,/ w for cases (/)-(iii). The lower
endpoint of the curves corresponds to the violation of condition (4.27) and the upper
endpoint to the violation of condition (4.3). To satisfy both conditions we need to
choose values of €;/w with the ranges of these curves. This we do for cases (ii) and (iii)
by choosing respectively the values e;/w =0-65 and €,/w = 0-85. To emphasise the
fact that condition (4.27) is a sufficient, but not necessary, condition for the existence of
a critical temperature we choose for case (i) the value €,/w = 0-5, which corresponds to
the lower endpoint of the curve in figure 3, when condition (4.27) becomes an equality.
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Figure 3. The reduced critical temperature kT./|w|
O4r plotted against €,/w for: A e;/w=0-5, u/w=~1-1B
) ) ‘ ) e/w=06, u/w=-138; C e2/w=0-8, u/w=-1.8.
05 06 07 08 08 10 The values of €;/w chosen for computation are
ey/w indicated by crosses.

A non-zero solution . to equation (4.21) exists in the temperature range 0= 7T <
T., where T, is the critical temperature, given as the unique solution of

W(T;1)=0. (4.28)
In the u—T plane we now have the coexistence curve

v =pn.(T)=¢g(T; As)
where

Ao =(1+sin x,)/co8 Xo-
Along the coexistence curve the pressure is given by

P=P,(T)=h(T; A,)/I°.

The densities of the coexistent phases are given by substituting A, and 1/A, in equation
(4.10). We identify the denser of these phases as the liquid phase with p = p; (T) and the
less dense as the vapour phase with p = py(7T"). The critical constants are u.= u,(T.),
P.=P,(T.) and p. = pr.(T.) = pv(T.). Inthe u — T plane the coexistence curve begins at
the origin and terminates at the critical point (., T.). We also have, in this plane, the
line of symmetry u =u(T)=g(T;1). Along this curve the pressure is given by
P=P(T)=h(T;1)/1* and the density p =p (T) is given by substituting A=1 in
equation (4.10). In figure 4 we show the coexistence curves for cases (i)-(iii), defined
above, in the p—T plane. We also show the line of symmetry for case (iii).

5. Asymptotic forms in a neighbourhood of the critical point
For the simple lattice fluid and for a number of other models (Widom and Rowlinson

1970, Widom and Stillinger 1973), a line of symmetry can be defined either (i) as the set
of invariant states of a symmetry transformation or (ii) as the line of states for which the
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chemical potential in the one-phase region is the analytic continuation of the chemical
potential along the transition curve. Not only is there no conflict between these two
possible definitions; it can also be shown that, in the density-temperature plane, the line
of symmetry is the analytic continuation of the diameter of the two-phase region. It has
however been shown by Mulholland (1973) that if, for a general classical model for
which no particular symmetry is assumed, the line of symmetry is defined by (jii), then
the line of symmetry in the density-temperature plane is no longer the analytical
continuation of the two-phase diameter.

Lavis (1975) has shown that for the model of Bell and Lavis (1970), treated by the
mean-field method of Guggenheim and McGlashan (1951), there is a line of symmetry
defined by (i) above. This coincides neither with a possible line of symmetry defined by
(ii) nor, in the density-temperature plane, with the analytic continuation of the
two-phase diameter.

For the present model in a neighbourhood of the critical point

W(T;1)~v(T/T.—1) (5.1)

where v is a positive constant, and on the coexistence curve it follows from equation
(4.21) that

X5 ~=2v(T/T.=1)d(To)/c(T) T<T. (5.2)
where

d(T)=[8c(T)+6b(T)+v(T)+2]". (5.3)
By expanding u,(T) in powers of x, and substituting from (5.2), it may be shown that in
a neighbourhood of the critical point

po(T) = ps(T) ~ kTer(T/ T.—1)° T<T. (5.4)
where

=5020(T)d (T e (Te(T)+b(T). (5.5)

Similarly from equation (4.10) it may be shown that, for the two-phase diameter
pa(T) =[p(T) +pv(T)}/2

pa(T)—p(T)~{(T/T:-1) T<T. (5.6)

where
¢ =1200(T)dX(Tc(T) + b(T))/ c(To). (5.7)

Again we have a situation where the line of symmetry coincides neither with the analytic
continuation of the coexistence curve in the u—T plane nor with the analytic continua-
tion of the two-phase diameter in the p-T plane.

Consider now the curve

Ms(T) T=T.

wl(T)  T<T. (5-:8)

w=u*(T)= [
in the u~T plane. It is clear from equation (5.4) that this curve is continuous with a
continuous gradient at T = T,. Now let us suppose that the system has independent
variables . and T and we fix the chemical potential according to equation (5.8) and
lower the temperature through the critical point. In a neighbourhood of the critical
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point the thermodynamic potential ® is given, from equation (4.16), by

DX(T), T; x) ~ao(T)+ay(Dx +ax Dx* +as(Tx* +as(Tx* (5.9)
where

ao(T) = p( THps(T) — ¥ (T}~ P(T)I* (5.10a)
and

a1(T) =2p(T)H1 = o T)Huo(T) — *(T)}. (5.100)

The remaining coeflicients can be expanded in power series with respect to (T/T.—~1)
and retaining only the leading terms we have

as(T)~2kTvd*(T)T/T.—1) (5.10¢)

a3(T) ~ =3k Torv(T)d> (TH(T/ Te—1) (5.10d)
and

as(T) ~3kToc(T)d(T). (5.10¢)

Above the critical point «(T) =0, a2(T)>0 and the potential ¢ has a minimum at
x=0. Below the critical point a;(T) is of the order of (T/T.—1)* ax(T)<0 and
a4(T)>0. The potential ® has a minimum at

x* ~—ax(T)/{2a4(T)}

which is equivalent to equation (5.2). The system separates by a second-order phase
transition into coexistent liquid and vapour phases as it passes through the critical point.
This is a classical Landau situation, but it differs in a number of interesting respects from
the case of a simple lattice fluid. There we have

B = = e = pe

and using the zeroth-order approximation we obtain a potential of the form (5.9) with

x =(p/p.—1) (5.11a)
ao(T) =Huc—p —2P.I% (5.11b)
a(T)=3(uc—u) (5.11¢)
ax(T)=kTL(T/T.—1) (5.11d)
ay(T)=3kT, (5.11e)
a2i41(T) =0 i>0. (5.11f)

The differences between the two cases are therefore:

(i) For the simple lattice fluid the order parameter is the scaled number density.
This is true even in higher-order approximations in virtue of the intrinsic hole—particle
symmetry of the system. The order parameter in our system is related to the basic
lattice group probabilities of our approximation method by equations (4.8) and (4.20).
In this sense the symmetry which we have used is less fundamental than that of the
simple lattice fluid.

(ii) For the simple lattice fluid, along the curve p = u*, the potential ® is an even
function of x, the minimum at y =0, for T > T, becoming a maximum for T < T.. For
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our system, since a;(T") # Ofor T < T, ¥ = 0is not a stationary point of ® for 7'< T. and
the potential is an even function of y only when y = x,.

(iii) The critical point in the simple lattice fluid is an isolated point with a
second-order transition because u does not appear in «;(T) for i >0 and «(T) =0 and
a»(T) = 0 are lines parallel to the axes in the u—T plane intersecting at (u., T.). Inour
system w appears in a;(7T) for i > 1, but by choosing u = #*(T) we have ensured that
a1(T) = 0 passes through the critical point together with a»(T) = 0 and a3(T) = 0, which
are tangential to the line T = T.. This is sufficient to make the critical point an isolated
second-order transition.

6. Discussion of water-like properties

Part of the purpose of this work has been to investigate the extent to which this lattice
model, which incorporates a simple form of directional bonding, is capable of exhibiting
some of the anomalous properties associated with the water system. We shall be
concerned with five of these properties.

For a range of subcritical pressures the water system has, along an isohar in the
liquid state: () a maximum in density; (if) a minimum in the isothermal compressibility
xT (Eisenberg and Kauzmann 1969, pp 183 and 184 respectively). On the liquid branch
of the coexistence curve: (iii) there is a minimum in the isothermal compressibility; (iv)
the coefficient of isobaric thermal expansion ap changes from its normal positive value
to a negative value as the temperature is lowered (Rowlinson 1969, p 55); (v) the
discontinuous change Acp in the constant pressure heat capacity cp, as the system
changes from liquid to vapour, is positive near the liquid-vapour critical temperature
but negative at lower temperatures (Eisenberg and Kauzmann 1969, p 69 and 99).

Of course the extent to which our model appears to exhibit water-like properties
may well be influenced not only by the form of approximation used but also by the fact
that within this approximation we have eliminated the possibility of the occurrence of a

08t !

KT/ wl

Figure 4. The liquid-vapour coexistence curves in the
density-temperature plane for: A €;/w =05, e3/w=
05 u/w=-~11, B €,/w=065, e;/w=06, u/w=
-1-38;, C e;/w=0-85, e/w=0-8, u/w=~1-8. Criti-
06 cal points are denoted by crosses and the line of sym-
P metry for case C is represented by a chain curve
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long-range ordered solid phase. The effect of the latter can clearly be seen in figure 4,
where at T =0 vapour-liquid coexistence occurs at zero density. If long-range order
were included we should expect from ground state considerations to have two phase
transitions; a liquid-solid transition and a solid—vapour transition, both associated with
nonzero discontinuities in density. The transition represented in figure 4 would then be
metastable. Having recorded these reservations which must necessarily be attached to
our calculations, we now discuss our results.

We found, in each of the three cases investigated numerically, that there were clear
maxima in the density along isobars at temperatures below the liquid-vapour transition
temperature and pressures less than the critical pressure. Isobars in the p—T plane are
shown in figure 5 for the case €;/w =0-8, u/w =—1-8, €;/w = 0-85. The liquid-vapour
transition temperature was calculated by comparing the values of the chemical potential
along the isobars.

10p

0-8-

Figure 5. Isobars in the density
temperature plane for €;/w =085,
€2/w=0-8, u/w=—-1-8. The isobars
are labelled with their values of the
reduced pressure PI*/|w|(Pi/%/lw]=
0-1, P.I*/|w|=0-01245). Phase tran-
‘ sitions are represented by vertical tie
0 02 04 06 08 lines and metastable or unstable parts
kTHwl of the curves by broken lines.

The isothermal compressibility «r is given by
xkr =[p(3P/3p)r]"". (6.1)

We found, again in all three cases, minima in the compressibility along isobars in the
liquid state. Examples of this, for the same case as figure 5, are shown in figure 6.

In figure 7 the isothermal compressibility («r). along the liquid branch of the
coexistence curve is shown for all three numerical cases. Minima are exhibited and
(k7). diverges to order (T.—T) ' as T approaches T..

The coeficient of isobaric thermal expansion (ap);. along the liquid branch of the
coexistence curve is given by
dpP, ( 1 )dp,_

(CYP)L=(KT)L"““"‘ Z a7

ar (6.2)
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02 04 06

Figure 6. The reduced isothermal compressi-
bility )q—[w]/l2 plotted against reduced tempera-
ture along isobars for €;/w =0-85, e5/w =0-8,
u/w=-1-8. Curves are labelled with their
values of the reduced pressure. Metastable parts
of the curves (see figure 5) are represented by
broken lines.

This function is shown for all three numerical cases in figure 8. It will be observed that at
low temperatures (ap), is negative. As T approaches T. it diverges to order (T.— T)™".
It has been shown by Lavis (1975) that the discontinuous change Acp in the constant
pressure heat capacity cp, as the system changes from liquid to vapour, can be expressed

2407
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Figure 7. The reduced isothermal compres-
sibility along the liquid branch of the coexis-
tence curve. Forcase A (e;/w =05, e5/w =
0-5, u/w=-1:1) the vertical axis is
xr|wl/(1001%); for case B (e;/w =065,
€/w =06, u/w =—1-38) the vertical axis is
xr|w|/(10/%) and for case C (e,/w =085,
€2/w=0-8, u/w=-1-8) the vertical axis is
«r|w|/1%. The curves tend to infinity as the
critical point is approached.
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8ok Figure 8. The reduced coefficient of isobaric
- thermal expansion ap|w|/k along the liquid
branch of the coexistence curve for A e, /w =0-5,
e/w=05u/w=-11,Be;/w=065,e;/w=
4120- 06, u/w=-1.38; C €;/w=0-85, e5/w=0-8;
u/w=—1-8. The curves tend to infinity as the
critical point is approached.
in the form

2 2
Acp=(cp)v—(cpL= _T'I— [(9}:“7> {pLlcr)v— pV(KT)L}

provi\dT
dP,[pvdpeL pL dpv} d’P, ]
= o=t —pvi|. .
dT{pL dT  pv dT de{PL PV} (6.3)

This function is shown for all three numerical cases in figure 9. It can be shown (Lavis
1975) that Acp diverges to infinity as T tends to zero and also as T tends to T,: in the
latter case to the order of (T.— T)"'2. 1t follows that negative values of Acp can be
achieved only by means of a negative minimum. In numerical cases (i) and (i7) there is
no evidence for such a minimum, although the possibility does exist, since computation
at low temperatures is very uncertain due to machine errors, even with the large
computer we employed. In numerical case (ii) there does seem to be some evidence for
a negative minimum although there is still a large element of computational
uncertainty.

7. Conclusions

We have introduced a lattice model with directional bonding capable of spin and
sublattice ordering. We have analysed the behaviour of the fluid phases using a
mean-field approximation and shown that, within this approximation, the model
exhibits some water-like properties. Landau theory predicts that the transition to
sublattice ordering if it occurs will be second order. Since such ordering could
correspond to the fluid—solid transition in this model this would be unfortunate for the
relationship between the model and the water system. There must however always be
serious reservations about the results of classical approximation methods especially in
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& Figure 9. The discontinuous change in the

constant pressure heat capacity as the system

changes from liguid to vapour. For case A

Al (e;/w=05, e/w=035, u/w=-111 the

: vertical axis is Acp/k; for case B (e;/w =

! 065, ea/w =06, u/w =-1-38} the vertical

! 4 axis is Acp/(2k) and for case C {e;/w = (-85,

) o : e/ w =08, u/w=-1-8) the vertical axis is

0 02 04 06 08 Acp/(4k). The curves tend to infinity as the

kTl wl critical point is approached.

two dimensions. A clearer appreciation of the properties of this model should be
achieved by means of real space renormalisation calculations on the lines applied to the
corresponding triangular lattice model by Young and Lavis (1979) and Southern and
Lavis (1979). The present work, especially the Landau analysis, should be regarded as a
preliminary to such calculations.
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Appendix: the derivation of equations (4.8)-(4.15)

We consider N/2 squares of sites sharing sites but not nearest-neighbour pairs. Let
pln, i] be the probability of a square being occupied by one of the equivalent
configurations [n, i] of table 3. Then

1=Y pln,ilwln, i] {Ala)
[n,i}

4p =3 npln, ilwln, il. (A.1b)

n,i
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In order to compensate for the elimination of half the lattice squares appearing in the
Hamiltonian (2.3a), we double the energies e[n, i] which appear in table 3. We thereby
obtain the total energy E for the system, given by

E=N Y €[n,ilp[n, ilo[n, i]. (A.2)
[ni]

The thermodynamic potential @ per site can now be expressed as a function of the set of
parameters {p[n, ]} and p by the equation

N®(u, T;{p[n, il}, p) =—kT In Q{p[n, i1}, p) + E{p[n, i]). (A.3)

The function {2 in the entropy term of equation (A.3) is evaluated using the approxima-
tion method of Guggenheim and McGlashan (1951). The calculation is quite standard
and follows the same pattern as that for the triangular lattice model of Bell and Lavis
(1970) and the body-centred cubic lattice model of Bell (1972). We have

In Q{p[n, i1}, p)
=N[(1-p)In(1-p)+p ln(p/4)—%[Z] w[n, ilp[n, il1n p[n, i1]. (A.4)

n,t

® is now minimised with respect to { p[n, i]} and p subject to the constraints imposed by
equations (A.1). We obtain the equilibrium conditions

x" exp{—2¢€'[n, i1/kT}

pln, il= Siniy X "wln, ilexp{—2¢€'[n, il/kT} (A-5)
and

u=kT[21Inx-In{p/4(1-p)}] (A.6)
where x is a variable which arises from the use of undetermined multipliers and

e'ln, il1=¢€[n, i]+inu. (A7)
We defined the probability

P =2 pln, iloln, i] (A.8)

i(n)
that a square of sites is occupied by n molecules for n =0, 1, 2, 3, 4 and the variable
A=4x/c(T) (A.9)

where ¢(T) is given by equation (4.95). Equations (4.8) now follow from table 3 and
equations (A.5) and (A.8). Substituting into equations (A.1) we obtain equation (4.10).
From equations (A.6), (A.9) and (4.10) we obtain equation (4.11). Equation (4.12) is
finally obtained by substituting into (A.3), giving the minimum value for ® which,
according to equation (4.18), is equal to —PI°.
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